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The Krichever-Novikov (KN) operator formalism for a nonchiral bosonic system 
is extended to higher-genus Riemann surfaces with K+2 punctures. This com- 
pletes the formulation of the KN operator formalism and preparation for describ- 
ing bosonic string scattering amplitudes. We elaborate further on the sewing 
prescription. 

1. INTRODUCTION 

There are two main ways of studying string perturbative theories, 
Polyakov's (1981a,b) functional integral formulation and the operator 
approach (Friedan et al., 1986; Ishiashi et  al., 1986; Vafa, 1987a; Alvarez- 
Gaum6 et  aL, 1987, 1988, 1988/89; Witten, 1988, Cheng, 1989a). The former 
has been studied intensively in the last decade and much understanding of 
string perturbative theory has also been obtained. Recently, however, a 
number of ambiguities have made the analysis of higher-order string loops, 
and of questions related to the finiteness of string theory, far more difficult 
than originally envisaged. 

The operator formalism has been gaining momentum over recent years 
thanks to its conciseness and economy, based on the universal Grassmanian 
manifold (UGM) as a mathematical foundation. Unfortunately, a conformal 
field theory formulated in this way over a nontrivial topology looks rather 
involved. What is more, the operator formalism so obtained is not well- 
defined and self-contained, since the conserved charges are obtained by using 
symmetries of the path integral. That is to say, they depend on the path 
integral formulation of a quantum field theory. 
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Based on the work of Krichever and Novikov (1987) (KN), for a non- 
chiral bosonic system we have given a new formulation called a KN operator 
formalism (Bonora et al., 1988; Cheng, 1989b, 1990). Here we will extend 
it to higher-genus Riemann surfaces with K +  2 punctures. 

The paper is organized as follows. In Section 2 we review the main 
results of  the KN operator formalism developed by us (Cheng, 1989b, 1990). 
In Section 3 we construct a Virasoro-like algebra and a Hilbert space for 
the system. Section 4 contains our new main results, a well-defined prescrip- 
tion for sewing conformal field theories on two Riemann surfaces and an 
operator formalism of  correlation functions of  conformal fields. In Section 
5, we remark on the sewing definition of conformal field theories. Finally, 
Section 6 points out some open questions that are discussed elsewhere. 

2. A KN OPERATOR FORMALISM FOR A BOSONIC STRING 

We study a nonchiral bosonic system on a genus-g Riemann surface Z 
with action 

s= f aJx (i) 

In local coordinates the equation of motion is 

0 J X = 0  (2) 

Suppose X(z, 2) is defined and nonsingular on Y~- D+ - D_ with local 
coordinates z~ vanishing at P• the D:~ being neighborhoods of P~. The 
general solution to the field equation can then be decomposed into two 
pieces, 

X(z, 2) =Xh(z) +X~ (3) 

where Xh(z) is holomorphic and X~(2) antiholomorphic. These functions 
can be expanded in the KN basis. The conjugate momenta of  Ph(z) and 
pa(~) are holomorphic and antiholomorphic one-forms, respectively. 

Let us introduce the Poisson brackets 

-- h t [Xh(p), P"(p')] - 2~zX~(p, p ) 

A h  + t'~ 1 

a~tp, p ) - 2 ~  i . A/(p)ro/(p ), p,p'~C~ (4) 
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If the background space in which the bosonic system lives is D-dimensional, 
the above brackets are directly generalized to 

[x""(p), x v,,(p,)] = 2~r 7" VA~(P, P'), 
(5) 

p , p ' e C ~ ,  11, v = 1, 2 . . . . .  D 

Here C~ is a closed contour on E called a level line, defined as follows: 

As r - ,  • o% C~ becomes small circles around P:~. 
According to the canonical quantization, we have the canonical 

commutators 

[x,~h, p yh] = j q~ vS~, [ X f  t' , X ;  h ] = L--,[Pt'h , p J~'h] = 0 (7) 

For  the 2-dependent piece, we obtain similar commutation relations 

[XU., py .]  y u  . . . . .  fpt,~ pv . ]  J : 77 It v S i j ,  [ ' ' i  , X j  ] - L--I , j : 0 ( 8 )  

In addition, we have four more commutators between z-dependent and 2- 
dependent objects: 

[y~h v ~ , q  PY~]=O, [ P  t'h P~'~l-rp~'h Y " ~  --,  , - - ,  J = [ X f  h, , t - ,  , - j  J--L--' , ' ' j  , - -0  (9) 

To summarize, equations (7)-(9) are a complete operator algebra for the 
bosonic system. The algebra services to define a Fock space. This can be 
carried out as done in Cheng (1989b, 1990). As a result, the full Fock space 
for the system is the tensor product of fig and ~ ,  since the two sets of  
operator algebras commute as mentioned above, 

H = ~ |  (10) 

In this way we have completed the element of an operator formalism for a 
nonchiral bosonic system on a higher-genus Riemann surface. 

It is necessary to develop the above formalism further in order to calcu- 
late string scattering amplitudes. In fact, two points of P~ may be viewed 
as two punctures on a Riemann surface. Calculating scattering amplitudes 
involves Riemann surfaces with two or more punctures. So we need to 
construct the KN operator formalism on such Riemann surfaces. Our basic 
idea is that the c6nformal field theory on a Riemann surface M o 2 N  can be 
constructed according to a well-defined prescription for a sewing construc- 
tion of conformal field theories if conformal field theories on surfaces M 
and N are naturally defined. 
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3. VIRASORO-LIKE ALGEBRA AND HILBERT SPACE 

It is well known that the field X (z, i) itself is not a conformal field 
(Friedan et al., 1986). However, any finite-order derivative of it multiplied 
by e '~: and their linear combinations are conformal. By convention, we 
denote them as ~pi(z, ~). 

The energy-momentum tensor ~ (T~) is of great importance in confor- 
real field theories. It is defined by (Belavin et al., 1984) 

= - - 2  i GX~?. ,X+D 

(11) 
T.~=-~l i  &X~. .X+D 

Due to the term D/(z- -w)  2, T= (T~) is not really a rank-two tensor. Under 
a holomorphic coordinate transformation z-~ w = w(z), it is transformed as 

T,',,.,=\Ow] - 12 ( Oz/Ow 2 (Oz/Ow) 2 J 
(12) 

If the covering of Z is part of a projective structure, i.e., the transition 
functions are in S/(2, c), the Schwarzian derivative vanishes. Thus, for a 
given meromorphic vector field ~ on E which is holomorphic outside of P• 
one has the Virasoro generator 

L ( ~ ) = 4  -(~ ~T (13) 
d C ,  

and T here is a two-form. The Virasoro algebra (Alberty et al., 1988; Huang 
and Zhao, 1989; Liu and Ni, 1989; Konisi et al., 1989) with central term is 

dSr/(z~:) (14) D 
[L(r L(r/)] =L[[~, r/l] •  i 

C+ 

with [ ~, r/] the Lie derivative of the vector fields. 
We introduce a basis of two-forms f~ dual to the vector fields ei such 

that the following relation holds: 

.4: ~ e~f~j=fi~j (15) 
d C~ 

and we expand the stress-energy tensor T in terms of f~j, 

T= Lj~j (16) 
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It is easy to check that 

L, = L[e,] (17) 
3 g / 2  

[L,, Lj] = Z C}Ls+:_s+Dz(ei ,  e:) (18) 
s = - - 3 g / 2  

where the coefficients C~/and the central term z(e i ,  ej) are given as follows" 

C,5 =-+- 1-~ ~ [e/, ei]n/+j_s (19) 
27ri c~ 

Z(~, r/) = 4 ~ 1  f dz+ ~(z• d3rl(z~)) (20) 
24:ri c~ dz3 

In the same way one can show that the operator/7~ corresponding to the g- 
dependent T also satisfies the Virasoro-like algebra 

3 g / 2  

[L,, L:]= E C~L:+j_,+D~(e, ,  ej) (21) 
s = - - 3g /2  

and 
[L,, [,:] = 0 (22) 

where E'[j and 2(e~,ej) are complex conjugates of C} and z(e: ,e / ) ,  
respectively. 

Let {~0~(z, i)} be a complete set of primary fields (Bonora et al., 1989) 
for the conformal field theory under consideration. They transform in the 
simplest way, 

\Oz /  \ 8 ~ /  cp:(z', e') (23) 

In order to coincide with the transformation property of the fields under 
diffeomorphisms, the singularities of the primary fields should satisfy the 
conditions 

Ai 1 
T._~q~s(z', i') = (z - z') 2 (o:(z', ~') + z -  z' 8=.q)~(z', i') + finite (24) 

s _ ~_@ ' ~eq)i(z', ~') = ( i -  z7') 2 ~o~(z', z') + _ _  O=,q:~(z, ~') + finite (25) 

They are equivalent to the requirements 

L/qg:=/~i~0/= 0 ' j > 3 g  (26) 

LofO: = A i ~ o i ,  Lo(Pi = Airp~ (27) 
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which are the generalization of the conditions imposed on the local fields in 
the Riemann sphere case. Since the primary fields are complete an arbitrary 
field in the theory can be expanded as a linear combination of operators of 
the form 

where 

Further, 
Ae-n~0i by 

~-ncpi = L-,,  . . . L-,,jL-~, . . ./~-~j~oi (28) 

3 - 3 
rtl >n2 �9 �9 �9 nj>_~g, fil  ~ _ ~ 1 2 ~ .  �9 �9 ni>_~g 

we define physical states corresponding to the operators 

I~- .~ol)  = ~ - . q , , l O  ).~ | 10)~ (29) 

In this way the Hilbert space is constructed completely for the states created 
by the primary fields and their descendants. 

4. SEWING CONFORMAL FIELDS AND THE KN 
OPERATOR FORMALISM 

That sewing two Riemann surfaces M and Nwith punctures yields a new 
Riemann surface M o o n  suggests a very intuitive method for constructing a 
genus-g surface out of two surfaces of lower genus; this is a purely mathe- 
matical question that has been solved by mathematicians. Simply speaking, 
one sews two Riemann surfaces M and N, and close coordinates ze and zQ 
which identify neighborhoods of P and Q with open discs in the complex 
plane. One thus constructs a new surface Z =  M o o N  of genus g = g l  +g2 by 
identifying points on M and N which satisfy zp = q/zQ. Our main concern 
here is to give a well-defined prescription for sewing conformal field theories 
(Vafa, 1987b; Sonoda, 1988a; Leclair, 1988) under sewing Riemann sur- 
faces. To do this, we extend the ideas in Cheng (1989b, 1990) and Sonoda 
(1988a). 

Let 0~ . . .  0K be local fields on M outside the discs {Iz:~]< 1/~/} around 
the points P• and let 0K+I �9 �9 0K+ L be local fields on N outside the discs 
{lw~l< 1/7} around Q~:. Their correlation function on M a N  outside P_ 
and Q+ is defined as follows: 

< 0 1  . . .  O K O K + I  . .  . O K + I .  > . . . .  N ~ ~. < 0 , . . .  OxZ#_,q~,(P+)>M 
i~nn 

•  OK+L>N (30) 
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where i runs over all pr imary fields, m and n their descendants, and/1i,,,. is 
a matrix defined on a sphere S 2 

a0~ i,,,, - < ~_,,,~oi(w = 0 )~_ ,~ , (z  = 0)>s 2 (3 l) 

We suppose that/1~ is invertible. 
Similarly, one could also do sewing on a given single Riemann surface 

M by removing two points P~ and P2 from the surface and identifying discs 
as above, and obtain a new surface denoted by M8 = Z  with a genus of  g +  1. 
In this case, the sewn correlation function is of the form 

< 0 , . . .  Ok>MS = Z (S- , , , (o , (P2)O,  . . .  OkS-,~&(P,)>Mt-~;],, (32) 
imn  

Note that the ~_,,,(o are the conjugate fields corresponding to the L~_,,,~0i in 
the above equations. 

Let us assume that the metrics around neighborhoods of P:L on M are 
given by 

g . . . .  = I/Iz• 2 (33) 

in the discs {[z• We consider a correlation function of local fields 

c g - (  01(z, , g,) . . . OK(Zk, ffk)>M (34) 

where 7/> Iztl > Iz2l" �9 "lz~l > O. We will show that we can calculate the correla- 
tion function as a matrix element of  operators between two states, namely 

- <al6,(z,,  e , ) . . .  0k(~k, ek)ll > (35) 

The state l1 > is fixed and the state ]f~> uniquely determined by the complex 
structure of  M and the choice of  z up to its normalization, and O(z, ~) 
represents an operator associated with a local field O(z, ~). 

We consider a Riemann surface M with K + 2  punctures by sewing a 
Riemann surface M '  with 2 punctures P• and K Riemann spheres each with 
3 punctures (Figure 1). 

/ - B  | 1 7 4  , ~  . 

Fig. l. A Riemann surface with K+2 punctures. 
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Then the sewing prescription (30) gives cg in the following form: 

~ =  Y, <~-,,,,~p,,(P~)>M, 
ilmlnl...ikmknk 

X - 1  , , , , , , , . , (~_ .# , , (w=O)O, ( z ,  e , ) ~ _ . ~ d z  =o)).~ 

•  " �9 • I.t~,l,,k,,k(L~-,,~Oi,,(W = O) Ok(zh:, ~k))s 2 (36)  

The two punctures P:~ on M are the same as the rightmost one on the kth 
sphere S 2 and P_ on M, respectively (seealso Figure 1). 

The matrix element of an operator O(z, ~) acting on the Hilbert space 
H =  4(( | ~ is defined as 

( ~-,,,q~ilO(z, 5)lAg-,~oj) =-- (~9'_,,,q~i(w = O)O(z, e)A~_,~i(z  = 0))s 2 (37) 

The above correlation function may thus be rewritten as follows: 

(g= Z <~'9'-'",(Pi,( P'+) >M'ItT,'',',('~f'-",qg',l 
mlilnl...mkikn k 

x O , ( z , ,  e,)1~-.2<o,2>1'~,', ,2.2<~-.2<o,21 

• �9 �9 • O~(z~ ,  e~)ll> (38) 

It is easily seen that the operator 

i =  X -'  " ] A~._,,, q~)/~ i,,,. ( Az' _ .  ~pil (39) 
i,m,n 

is the identity one. This comes from the definition of inner products of states. 
Defining again a state as 

<~1- Y~ ' - '  (s q~,, (p  +) )M.,u ,,,.,,., ( .L-~_,., ~o,, I (40) 
ilt~llffl 

one obtains equation (35), as expected, where 

(Le-,,,,~0,,(Pg))M. =M' (61 | (OtE'-,,,,b,,(Pg)I0)M' | 10>M, (41) 

Thus, one has a KN operator formulation for conformal field theory on 
Riemann surfaces with K +  2 punctures. 

Once we have the KN operator formalism, we can apply it to computing 
scattering amplitudes of closed bosonic strings. It may give new insight into 
string perturbative theories. Of course, there are questions which remain 
open for the operator formalism. 

5. R E M A R K  O N  T H E  P R E S C R I P T I O N  

The two consistency conditions for the sewing prescription (30) have 
been checked (Sonoda, t988a). One is the smoothness of the correlation 
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function. When a local field 0 is located on the annulus { I / r <  [zl < r}, it can 
also be thought of  as being located on the annulus { l / r <  twl < r}. Thus, 
there are two ways of defining the correlation function of 0 using (30). It is 
clear that the two must agree, and it has been shown that they do. Another 
question is the physical meaning of the energy-momentum tensor. One must 
make sure that T.-z defined on MooN by equation (30) also generates a 
deformation of  the complex structure of  MooN. It has been verified that ~ .  
plays the role of  a generator of deformations for the conformal theory of 
MooN. However, consistency checks alone are not enough for the prescrip- 
tion. We have to elaborate further on general physical grounds. 

Let Z be a Riemann surface. We study a conformal field theory on it. 
A partition function Zx is obtained as a functional integral over all possible 
configurations of the field variables on X. We can imagine that we cut X 
along loops C1 and (72 and obtain three surfaces, El, Zt2, and E2 (Figure 2). 
For  fixed boundary conditions ai and bj on C~ and C2 we perform functional 
integrals on El, Z j2, and Z2 separately. The resulting partition functions are 
Zx,(ai), Zx,2(ai, hi), and Zx~(bj). The Zz is obtained as a product of  the three 
summed over all possible boundary conditions, 

z~ = Z zx,(ai)z~,~(a~, bj)Z~2(bi) (42) 
i , j  

This definition comes from general properties of the functional integral 
which say that the functional integral on X is equal to the product of the 
functional integrals on the cut surfaces with a suitable sum over a complete 
set of boundary conditions. 

Now consider the inverse of the cutting. Suppose that we have two 
Riemann surfaces M and N (Figure 3) on which certain conformal fields 

Ci Cz ~ C i  

~12 

Z2 

Fig. 2. Culting of Z along C~ and 6"2. 

M 
N 

Fig. 3. Riemann surfaces M and N. 
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live with the same properties. The surfaces M and N can be sewn into a new 
surface MooN according to the standard sewing construction of  plumbing 
fixtures (Figure 4). By removing the interiors of the unit circles C1 (]zll = 1) 
and C2 (Iz21 = 1) and gluing in a cylinder A of length L, the surface MooN 
is constructed. 

Then the functional integral on Moon can be separated into ones over 
M, A, and N with the fixed boundary conditions. For the case under consid- 
eration, equation (42) now can be diagrammed as follows: 

ZMo~N = ~ ~ l~Oc,) (0c, I C;' O1(0c2)  ((Oc21~ (43) 
Cl,C 2 A 

M N 

with the kets and bras representing boundary conditions on M, A, and N. 
Using the state/field relation (Polchinski, 1988), we can also rewrite equation 
(43) as 

ZM~176 q~c ' c , , c2  ( O c , ~  q)C~ OC~(~ (44) 

M A N 

For the conformal field under consideration we know exactly the com- 
plete set of  local fields, and the local fields inserted on surfaces like ~0c etc., 
must be linear combinations of the primary fields and their descendants, 
namely of  ~_,,,(0,-. Moreover, in Hilbert space language, sewing the corre- 
sponding circles on the surfaces M, A, and N means identifying the corre- 
sponding Hilbert spaces. It is clear that the result of the functional integral 
on the surface MooN is independent of  how we specify the order for a pair 
of a ket and bra on the joining circle. As is well known, this requires a time- 
reversal operation in the Hilbert space, which is obtained by the appropriate 
choice of  a real basis. In field language, we introduce conjugate fields to 
satisfy the requirement. Taking into account the above remark, we can 
obtain a standard form of  the partition function in the standard notations 

Z M ~  E <" " " ~ - m ( P i ( P ) > M < ~ - m ~ 9 ' (  W = O ) ~ - n ~ O J (  Z = 0 ) >  A 
iron 

x <5o_,,~i(Q) �9 �9 �9 )N (45) 

~ Ct 

M MooN 

Fig. 4. Sewing of M, A and N, into MooN. 
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Under the choice of the metric on A 

g z ~ :  1/Izl  2 (46) 

the surface A is equivalent to a sphere with two punctures. 
Note that the surfaces M and N are defined to have arbitrary topology 

and operator insertions, so equation (45) is a statement about correlation 
functions as well, namely, 

{ 0 ,  . . .  0 ~ 0 ~ + , . . .  0K+L}M~N = Z ( 0 ,  . . .  Ok~-,,,q)~(P))Mp,,.~. 
i t~ln 

x (5~- , (o i (Q)Ox+, . . .  OK+r~)N (47) 

Equation (47) is what we want and in this way we complete the elaboration 
on the definition (30) in Section 4. 

6. FINAL REMARKS 

Conformal field theories provide a powerful tool with which to probe 
the structure of string theories. We have worked out formally the KN opera- 
tor formalism, relying heavily on a sewing construction of conformal field 
theories and conformal techniques. It has been shown that if M o o N  and 
M ' ~ N '  are equivalent Riemann surfaces, the prescription gives the same 
theory (Sonoda, 1988b). However, a few questions remain open. 

Generally speaking, the correlation functions of local fields on higher- 
genus Riemann surfaces should still satisfy systems of linear differential 
equations. What we need to do first is to develop a general method for 
deriving differential equations for the correlation functions on arbitrary 
Riemann surfaces except the sphere and torus (Belavin et al., 1984; Mathur 
el al., 1989). Then, we need to show how to derive differential equations for 
the correlation functions on M o o N  from those for correlation functions on 
M and N, respectively. 

We discuss these two questions elsewhere (Cheng, 1993). 
Also, it would be of interest to construct KN operator formalisms for 

other conformal field theories on higher-genus Riemann surfaces. It is 
expected that this extension is not very difficult. 

ACKNOWLEDGMENTS 

I thank Profs. Sun ZhenZu and Xu YiChao for helpful discussions on 
singular metrics on Riemann surfaces. 



540 Cheng 

REFERENCES 

Alberty, J., Taormina, A., and Van Baal, P. (1988). Communications in Mathematical Physics, 
120, 249. 

Alvarez-Gaumb, L., Gomez, C., and Reina, C. (1987). Physics Letters B, 190, 55. 
Alvarez-Gaumb, L., Nelson, P., Gomez, C., Sierra, G., and Vafa, C. (1988). Nuclear" Physics 

B, 303, 455. 
Alvarez-Gaum+, L., Nelson, P., Gomez, C., Sierra, G., and Vafa, C. (1988/89). Nuclear" Physics 

B, 311,333. 
Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B. (1984). Nuclear Physics B, 241, 

333. 
Bonora, L., Lugo, A., Matone, M., and Russo, J. (1988). SISSA/ISAS preprint, 67EP (May 

1988). 
Bonora, L., Matone, M., and Rinaldi, M. (1989). Physics Letters B, 216, 313. 
Fay, J. D. (1973). Theta Functions on Riemann Surfaces, Springer, Berlin. 
Friedan, D., Martinec, E., and Shenker, S. (1986). Nuclear Physics B, 271, 93. 
Huang, Chao-shan, and Zhao, Zhi-yong (1989). Physics Letters B, 220, 87. 
lshiashi, N., Matsuo, Y., and Oogury, H. (1986). University of Tokyo preprint Ut-499. 
Konisi, G., Saito, T., and Takahasi, W. (1989). Progress of Theoretical Physics, 82, 162. 
Krichever, I. M., and Novikov, S. P. (1987). Funktsional'nyi Analiz i ego Prilozheniya, 21, 46, 

47. 
Leclair, A. (1988). Nuclear Physics B, 247, 603. 
Liu, Yu~liang, and Ni, Guang-jiong (1989). Physics Letters B, 220, 99. 
Mathur, S. D., Mukhi, S., and Sen, A. (1989). Nuclear Physics B, 312, 15. 
Polchinski, J. (1988). Nuclear Physics B, 307, 61. 
Polyakov, A. M. (1981a). Physics Letters B, 103, 207. 
Polyakov, A. M. (1981b). Physics Letters B, 103, 211. 
Cheng, Qihua (1989a). Journal of ZhengZhou University (Natural Science Edition), 21, 47 

[in Chinese]. 
Cheng, Qihua (1989b). University of Stockholm preprint USITP-89-3. 
Cheng, Qihua (1990). Communications #~ Theoretical Physics, 14, 189. 
Cheng, Qihua (1993). In preparation. 
Sonoda, H. (1988a). Nuclear Physics B, 311,401. 
Sonoda, H. (1988b). Nuclear Physics B, 247, 417. 
Vafa, C. (1987a). Physics Letters B, 190, 47. 
Vafa, C. (1987b). Physics Letters B, 199, 195. 
Witten, E. (1988). Communications in Mathematical Physics, 133, 529. 


